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Efficient visual object representation using a biologically plausible spike-latency code 
and winner-take-all inhibition
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- The LGN layer consisted of simulated firing-rate neurons with 
center-surround receptive fields, implemented using a direct application 
of a 6x6 difference of Gaussian filter on the image.

 - We converted the LGN activity maps to first spike relative latencies.
 - The LGN spikes contributed to an increase in the membrane potential of 
V1 neurons, until one of the V1 membrane potentials reached threshold.

- The weights of plastic synapses connecting LGN and V1 were updated 
using STDP, as a function of the relative timing of pre- and postsynaptic 
spikes: Long-term potentiation (LTP) (∆t > 0) and long-term depression (LTD) 
(∆t ≤ 0).

Winner-take-all inhibition

- We used a hard WTA-I scheme such that, if any V1 neuron fired during a 
certain iteration, it simultaneously prevented other neurons from firing until 
the next sample.

Stimulus reconstruction
One or more than one neuron was active for each 

sample.
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Modeling the retinotopic pathway

- Low power consumption

- Fast inference

- Event-driven processing

- Asynchronous operation

The reconstruction error of the test set went 
through a minimum (at roughly 150 V1 neurons).

Spiking Neural Networks
Deep Convolutional 
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- Large amount of energy

- Computation

- Memory

- Efficient object representations can be learned with STDP rule .
              

 Every spiking neuron became selective for a particular 
feature allowing a rich object representation.

Multiple neurons ended up learning similar visual 
features, which resulted in poor object reconstructions.

- Our network is able to represent objects with as little as 150 spiking  
neurons and at most 40 spikes.

Contribution: We 
present a Spiking Neural 
Network (SNN)  model 
that uses spike-latency 

encoding and 
winner-take-all inhibition 

(WTA-I) to efficiently 
represent stimuli from the 
Fashion MNIST dataset.
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