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Efficient visual object representation using a biologically plausible spike-latency code

and winner-take-all inhibition
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- Low power consumption
- Large amount of energy
i - Fast inference
- Computation . .
- Event-driven processing
- Memory

- Asynchronous operation
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e Network Architecture

A. Modeling the retinotopic pathway

- The LGN layer consisted of simulated firing-rate neurons with
center-surround receptive fields, implemented using a direct application
of a 6x6 difference of Gaussian filter on the image.

B . Spike-latency code

- We converted the LGN activity maps to first spike relative latencies.
- The LGN spikes contributed to an increase in the membrane potential of
V1 neurons, until one of the V1 membrane potentials reached threshold.
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0, otherwise.

C. Spike-timing dependent plasticity (STDP)

- The weights of plastic synapses connecting LGN and V1 were updated
using STDP. as a function of the relative timing of pre- and postsynaptic
spikes: Long-term potentiation (LTP) (At > 0) and long-term depression (LTD)
(At = o).
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D. winner-take-all inhibition

- We used a hard WTA-I scheme such that, if any V1 neuron fired during a
certain iteration, it simultaneously prevented other neurons from firing until
the next sample.
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The reconstruction error of the test set went
through a minimum (at roughly 150 V1 neurons).
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Every spiking neuron became selective for a particular
feature allowing a rich object representation.
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features, which resulted in poor object reconstructions.

Object Representation and Results

E. Stimulus reconstruction

One or more than one neuron was active for each

original LGN

sample,
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- Efficient object representations can be learned with STDP rule .

Conclusions

- Our network is able to represent objects with as little as 150 spiking
neurons and at most 40 spikes.



